

## Biochar synthesis with emphasis on pyrolysis and biochar properties

Biochar synthesis transforms organic biomass into a stable, carbon-rich material through thermal decomposition, with pyrolysis being the dominant method due to its efficiency and versatility. Pyrolysis heats biomass in an oxygen-limited environment, producing biochar alongside bio-oil and syngas, which can be used for energy or chemical applications. The properties of biochar—porosity, surface area, chemical composition, and stability—are governed by pyrolysis conditions (temperature, heating rate, residence time) and feedstock type, enabling customization for uses like soil enhancement, pollutant removal, or carbon sequestration. Understanding these factors is crucial for optimizing biochar's performance and maximizing its environmental benefits [1-4].

Pyrolysis is classified into slow, fast, and intermediate types, each suited to different outcomes. Slow pyrolysis, conducted at 300–700°C with long residence times (hours to days), maximizes biochar yield (20–50% of biomass weight) by allowing thorough carbonization. It is ideal for producing biochar for soil applications, as it preserves functional groups and nutrients. Fast pyrolysis, at 700–1000°C with short residence times (seconds), prioritizes bio-oil (up to 60% yield), producing less biochar (10–20%) with higher aromaticity but reduced reactivity. Intermediate pyrolysis balances these extremes, offering flexibility for co-producing biochar and bio-oil [5-7]. The choice of method depends on the desired product distribution and application, with slow pyrolysis being most common for biochar-focused systems.

Temperature profoundly influences biochar's physical and chemical properties. At lower temperatures (300–400°C), biochar retains volatile organic compounds and oxygen-containing functional groups (e.g., carboxyl, hydroxyl), which enhance its ability to bind nutrients or pollutants. This biochar is less carbonized, with moderate surface areas (10–100 m<sup>2</sup>/g), making it suitable for soil fertility. Higher temperatures (500–700°C) increase carbonization, yielding biochar with greater surface area (200–500 m<sup>2</sup>/g), porosity, and aromatic structures but fewer functional groups. For example, biochar at 600°C may exhibit a highly porous, graphene-like structure, ideal for adsorption in wastewater treatment. Heating rate and residence time also matter—slower rates promote uniform decomposition, while longer times enhance stability by reducing labile carbon [8, 9].

Feedstock type introduces further variability. Lignocellulosic biomass (e.g., wood, straw, corn stover) produces biochar with high carbon content (70–90%) and porosity due to its cellulose, hemicellulose, and lignin components. Woody biochar is often stable and porous, ideal for long-term carbon sequestration. Conversely, manure or sewage sludge yields biochar with higher ash (20–50%) and mineral content (e.g., calcium, potassium), increasing pH (8–10) and nutrient availability but potentially lowering stability. For instance, poultry litter biochar may contain significant phosphorus, benefiting agriculture but requiring careful screening for contaminants like heavy metals [10-13]. Feedstock

---

diversity allows biochar to be tailored—wood for adsorption, manure for fertility—but demands rigorous quality control to ensure consistency.

Biochar's chemical composition shapes its environmental behavior. Carbon content typically ranges from 50–90%, with oxygen, hydrogen, nitrogen, and ash varying by feedstock and temperature. High-carbon biochar resists microbial breakdown, with carbon half-lives exceeding 1000 years, making it a powerful tool for sequestration. Ash, rich in minerals, raises biochar's pH, neutralizing acidic soils but potentially limiting use in alkaline environments. Surface functional groups, formed during pyrolysis, enable ion exchange and adsorption. For example, carboxyl groups bind cations like ammonium, enhancing nutrient retention, while aromatic structures improve chemical stability. These properties collectively determine biochar's suitability for specific roles, from soil amendment to heavy metal immobilization [10–13].

Pyrolysis byproducts enhance the process's sustainability. Bio-oil, a complex mixture of hydrocarbons, can be refined into biofuels or chemicals, while syngas (carbon monoxide, hydrogen, methane) can power reactors or generate electricity. These co-products offset energy costs and reduce reliance on fossil fuels, improving the economic viability of biochar production. For instance, a well-designed pyrolysis system can achieve energy neutrality by recycling syngas. However, challenges include managing emissions, such as volatile organic compounds or PAHs, which may form at high temperatures and pose environmental risks. Advanced reactors with gas capture systems are being developed to address this, ensuring cleaner production.

Scaling up biochar synthesis requires innovation. Continuous reactors, unlike batch systems, improve efficiency and throughput, while microwave-assisted pyrolysis reduces energy use by targeting biomass directly. Feedstock preprocessing, such as drying or pelletizing, enhances uniformity but adds costs. Economic feasibility hinges on balancing biochar's value (e.g., as a soil enhancer or carbon credit source) against production expenses. Research into low-cost feedstocks, like municipal waste, and decentralized systems could democratize access, particularly in rural areas where agricultural residues abound.

In summary, biochar synthesis via pyrolysis offers a flexible, sustainable approach to valorizing biomass. By manipulating temperature, residence time, and feedstock, producers can engineer biochar with tailored properties for diverse applications. While challenges like emissions and costs persist, the ability to produce a stable, multifunctional material alongside renewable energy underscores pyrolysis's potential. Ongoing advancements in reactor technology and process optimization will further solidify biochar's role in addressing global environmental challenges.

## References:

1. Altikat, A.; Alma, M.H.; Altikat, A.; Bilgili, M.E.; Altikat, S. A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. *Sustainability* **2024**, *16*, 937. <https://doi.org/10.3390/su16020937>
2. Ighalo, J.O.; Akaeme, F.C.; Georgin, J.; de Oliveira, J.S.; Franco, D.S.P. Biomass Hydrochar: A Critical Review of Process Chemistry, Synthesis Methodology, and Applications. *Sustainability* **2025**, *17*, 1660. <https://doi.org/10.3390/su17041660>
3. Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. *Cleaner Materials* **2022**, *6*, 100137. <https://doi.org/10.1016/j.clema.2022.100137>.
4. Zou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. *Chemical Engineering Journal* **2022**, *441*, 135972. <https://doi.org/10.1016/j.cej.2022.135972>.
5. Manyà, J.J. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs. *Environmental Science & Technology* **2012**, *46* (15), 7939-7954 <https://doi.org/10.1021/es301029g>
6. Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. *Energies* **2023**, *16*, 6936. <https://doi.org/10.3390/en16196936>
7. Jerzak, W.; Acha, E.; Li, B. Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. *Energies* **2024**, *17*, 5082. <https://doi.org/10.3390/en17205082>
8. Zhao, S.-X.; Ta, N.; Wang, X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. *Energies* **2017**, *10*, 1293. <https://doi.org/10.3390/en10091293>
9. Li, Y.; Chen, W.; Fang, S.; Xu, Z.; Weng, H.; Zhang, X. The Influence of Pyrolysis Temperature and Feedstocks on the Characteristics of Biochar-Derived Dissolved Organic Matter: A Systematic Assessment. *Clean Technol.* **2024**, *6*, 1314-1325. <https://doi.org/10.3390/cleantechol6030062>
10. Mujitaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Pereira, A.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. *Journal of Cleaner Production* **2023**, *402*, 136815. <https://doi.org/10.1016/j.jclepro.2023.136815>.
11. Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of biochar production via crop residue pyrolysis: Development and perspectives. *Bioresource Technology* **2023**, *369*, 128423. <https://doi.org/10.1016/j.biortech.2022.128423>.

---

12. Tomczyk, A., Sokołowska, Z. & Boguta, P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. *Rev Environ Sci Biotechnol* **19**, 191–215 (2020).  
<https://doi.org/10.1007/s11157-020-09523-3>
13. Kuryntseva, P.; Karamova, K.; Galitskaya, P.; Selivanovskaya, S.; Evtugyn, G. Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties. *Agriculture* **2023**, 13, 2003. <https://doi.org/10.3390/agriculture13102003>

